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Abstract. A fast temperature,water vapor andozoneatmosphericprofile retrieval

algorithm is developedfor the high spectral resolution Infrared Atmospheric Sounding

Interferometer (IASI) space-borneinstrument. Compressionand de-noisingof IASI

observationsare performedusing Principal Component Analysis. This preprocessing

methodologyalso allows for a fast pattern recognition in a climatological data set to

obtain a first guess.Then, a neural network usingfirst guessinformation is developedto

retrieve simultaneouslytemperature, water vapor and ozoneatmosphericprofiles. The

performanceof the resulting fast and accurate inversemodel is evaluated with a large

diversifieddata set of radiosondesatmospheresincluding rare events.
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1. Introduction

The Infrared Atmospheric Sounding Interferometer (IASI), is a high resolution

(0.25 crn -1) Fourier transform spectrometer scheduled for flight in 2005 on the European

polar METeorological Operational Platform (METEOP-1) satellite funded by the

EUropean organization for METeorological SATellites (EUMETSAT) and the European

Space Agency (ESA) member states. This instrument is intended to replace the High

Resolution Infrared Radiation Sounder (HIRS) as the operational infrared sounder and

is expected to reach accuracies of 1 K in temperature and 10 % in water vapor with

vertical resolutions of 1 km and 2 km respectively (cloud-free). IASI, jointly developed

by the Centre National d't_tudes Spatiales (CNES) and EUMETSAT, provides spectral

channels from 3.5 #m to 15.5 #m at considerably higher spectral resolution than HIRS

and, together with the Advanced Microwave Sounding Unit (AMSU), is expected to

lead to dramatic improvements in the accuracy and height resolution of remotely sensed

temperature and humidity profiles and ozone amount.

The dimension (number of measurements per field-of-view) of the IASI observations

is much higher than for previous instruments: 8461 channels compared to 27 for the

TIROS-N Operational Vertical Sounding (TOVS) instrument. This is a major problem

in the definition of retrieval algorithms. Classical approaches are often unable to

deal with this amount of information. Iterative methods require a fast direct model

with precise Jacobians (i.e., first derivative of observation with respect to variables to

retrieve), but such a model is not available yet. Variational assimilation techniques

also need a fast forward model with the Jacobians or the tangent linear operator: this

approach is also unable to use the full IASI information because of the dimension of

observations. To deal with this high-dimension problem, various techniques to select

channel in the IASI spectrum haw_ been developed in [Rabier et al., 2000] or in [Aires

et al., 2000], A regularized neural net approach for retrieval of atmospheric and surface

temperatures with the IASI instrument, submitted to J. of Applied Meteorology, 2000).



As we will seein the following, suchan approachis not optimal becauseinformation is

necessarilylost.

In this study, we presentan inversion schemefor retrieving geophysicalvariables

from IASI measurements.The retrieval techniqueshould be able to deal with realistic

conditions: noisein the measurements,nonlinearity of the function, non-Gaussianityof

the variablesinvolved, multicollinearities betweenvariables,dependenceof first guess

errors on situation, uncertaintiesin the radiative transfer model, etc. Neural network

techniques,and in particular the Multi-Layer Perceptron(MLP) technique,havealready

provedvery successfulin the developmentof computationally efficient inversionmethods

for satellite data and for geophysicalapplications [Escobaret al., 1993; Aires et al., 1998;

Chaboureau et al., 1998; Chevallier et al., 1998; Krasnopolsky et al., 2000; Aires et al.,

2001]. They are well adapted to solve nonlinear problems and are especially designed to

capitalize on the inherent statistical relationships among the retrieved parameters. No

assumptions are made concerning the probability distribution functions of the variables

involved in the problem, so the method is able to deal with non-Gaussian distributions,

which is not the case with classical inversion techniques. Furthermore, the neural

network inversion method is a model of the inverse radiative transfer function in the

atmosphere parameterized once and for all, where classical methods use the inversion

technique for each observation.

However, for ill-conditioned problems, the use of a first guess estimate and associated

error covariance matrix is essential for elaborated stand-alone retrieval schemes [Chddin

et al., 1985] as well as for three-dimensional/four-dimensional variational assimilation

schemes since it controls the impact of the measurements on the retrieved parameters

[Thdpaut et al., 1993]. A neural network techniques has recently been developed [Aires

et al., 2001] to use such a priori information (i.e., a specific state-dependent first guess

estimate). This has been a major improvement of the classical neural network methods

for remote sensing in particular, and for inverse problems in general.



Other great advantagesof the MLP are its rapidity, small amount of memory

required and accuracy of results. Fusion of information from different instruments

coupled to the nonlinear habilities of the neural network model [Prigent et al., 2001],

can exploit more fully the relationships among the observations and among the variables

that are described implicitly in the training data set. Variational techniques have to

specify the covariance matrices explicitly, which is not a simple task since these matrices

are dependent on atmospheric situation, latitude, etc.

We present here an application of a new neural network method to the retrieval

of atmospheric temperature, water vapor and ozone profiles retrieval from IASI

observations. Previous studies have used information content analysis to estimate the

expected retrieval errors of IASI [Amato and Serio, 1997; Pruner et al., 1998]; but these

estimates are dependent on some assumptions (Gaussian hypothesis, independence

between first guess and observation, first guess error covariance matrices often taken

to be diagonal, i.e. no correlations between the first guess errors of the variables, etc),

and have been applied to only for a limited number of atmospheric situations. Where

our neural network model is parameterized and tested over a large number of real

atmospheric situations as measured by radiosondes, taken from the Thermodynamic

Initial Guess Retrieval (TIGR) database [Chgdin et al., 1985; Achard, 1991; Escobar,

1993b; Chevallier et al., 1998].

This paper is organized as follows: the description of the IASI instrument is

presented in section 2. Section 3 describes the compression and the de-noising

techniques based on Principal Component Analysis (PCA) for IASI spectra. The

retrieval algorithm based on a first guess-based neural network approach is presented in

section 4. Temperature, water vapor and ozone atmospheric profiles retrieval results are

presented in section 5. Section 6 concludes this study with some perspectives on this

work.



6

2. IASI Instrument

2.1. Characteristics of IASI

The two major advances of the IASI instrument are: (1) the dramatically increased

number of spectral channels: for each field of view, 8461 measures are available covering

the spectral range from 645 to 2760 cm -1 with a resolution (unapodized) of 0.25 cm -1,

with hundreds of them sounding the atmospheric temperature. The retrieval becomes an

over-constrained problem. (2) The increased resolution power: with IASI the resolution

power is two order of magnitude higher than with such instrument as TOVS HIRS

radiometer. So, it is expected that the vertical resolution and the accuracy of retrievals

will substantially increase: the IASI mission specifications are a mean error of 1 K in

atmospheric temperature and 10 _ in relative humidity profiles with respectively, 1 Km

and 2 Km vertical resolution. Table 1 represents some of the most important spectral

regions and their associated absorbing constituent.

The IASI noise is presently simulated by a white Gaussian noise (this is a realistic

assumption for an interferometer) with a NEAT at 280 K given in Table 2 ([Cayla

et al., 1995], and for more recent results, Cayla et al., personal communication). The

NEAT at 280 K represents the standard deviation st2so(V) of the Gaussian noise for

a given wave number v. At any other scene brightness temperature, T', the standard

deviation, sty, (v), of the Gaussian noise is computed by:

cOB(Tb=280,v)

str, (v ) = OrbcOB(Tb=T') " st2so (v) (1)
Orb

which shows that the noise level increases when T' decreases. Figure 1 shows the IASI

spectrum averaged over the whole TIGR data set (a data set of climatological situations

that will be described in section 5.1) with the corresponding noise standard deviation

spectrum. This figure shows that some spectral regions could have a noise standard

deviation higher than 2 K for a standard atmospheric situation.



2.2. Dimension Reduction

Using directly (i.e. without pre-processing) all 8461 IASI channels in a retrieval

algorithm is a simplistic strategy that would give poor results for practical and theoretical

reasons. High-dimension data have to be reduced to limit the curse of dimensionality

[Bishop, 1996]. The curse of dimensionality stipulates that, as the dimension M of the

data space increases, the difficulty of the statistical regression procedure, consisting here

to infer the Radiative Transfer Model (RTM), increases significantly and the number,

E, of examples required to the regression increases exponentially with the dimension

M. The curse of dimensionality, however, may remain tractable because the intrinsic

complexity of the function to be estimated, which is really the factor controling the

number of examples required, does not increase exponentially with the dimension.

However, practical problems occur. For example, the number of parameters in the

regression model increases with M. This excess degrees of freedom in the regression,

combined with the introduction of non-informative data (i.e., variability not linked to

the desired output, like the instrumental noise or an inadequate vertical resolution),

may perturb the regression process: the quality criterion used to parameterized the

inverse model becomes more complex so the global minimum is harder to estimate.

Furthermore, computations are longer with such a large number of parameters.

Thus, the goal of dimension reduction is to present to the regression model the

most relevant information from the initial rough data. One way to reduce dimension is

feature selection: only a part of the observation is selected for the regression [Jain et al.,

1997]. An example of such an approach is channel selection schemes [Rodgers, 1990].

For example Jacobian-based channel selection algorithms use the Jacobians of the RTM

to investigate the information content of the instrument channels in order to select the

more pertinent ones [Rabier et al., 2000] and [Aires et al., 2000]. But this approach does

not allow a full use of all the information provided by IASI (i.e., loss of information)

and it also limits the use of channel redundancy for noise reduction. This is a main
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drawback for IASI sincenoisecan be important in somespectral region, especiallyin

the third spectral band of IASI (Figure 1). Another way to reducethe dimension of

the data is by feature extraction, i.e. and operator acts on the entire observedIASI

spectrum to extract its more pertinent characteristics. PCA is often used for that

purpose: the dimensionreduction is obtained by combiningmutual information among

measuredbrightnesstemperatures. As explainedin next section,a compromiseneedsto

be made betweenreducingdata dimensionand preservingthe redundant information in

the rough data.

3. Principal Component Analysis of IASI Spectra

Although widely used for statistical analysis, the PCA technique is also very

efficient for compression purposes [Joliffe, 1986]. It is used here to compress and

de-noise the IASI observations. In the following, all IASI spectra are the result of a

RTM computation since IASI does not exist yet.

3.1. Principal Component Analysis

Let 7) -- (x e ; e = 1,..., E} be a database of E spectra, x, of dimension M = 8461.

Let E be the M x M covariance matrix of the 7) database, l, et V be the M x M matrix

with columns equal to the eigenvectors of _ and let L be the diagonal M x M matrix

with the M associated eigenvalues in decreasing order (by definition _ • V - V • L).

We define the M x M filter matrix F = L -1/2.V t. The matrix F is used to

project IASI spectra, x, onto a new orthonormal base composed by the columns of F:

{F,i; i=l,...,M}:

h=F.x=F1,'xl+...+FM,'XM (2)
x = F -1 • h = F t • h = hi • F,1 + ... + hM " F.M

where t is the transpose operator. The vectors {Fi, ; i = 1,...,M} are called the

filters and the normalized eigenvectors {F,i ; i = 1,..., M} are called the PCA base
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functions. Becausetheseeigenvectorsare an orthogonalbasisto representIASI spectra,

x, we will refer to them as eigen-spectra. By definition, the coordinates of the new data

h are uncorrelated since:

< h. h t >=< F. x. x t • F t >=< F. E • F t >= IMxM, (3)

where < • > represents the mathematical expectation.

Practically, the first step in a PCA approach is to compute the 8461 x 8461

covariance matrix 52 =< (x- < x >). (x- < x >)t > of the database, where x is

the IASI spectrum composed of the 8461 channels. The eigenvalue matrix L and the

corresponding eigenvectors V of this covariance matrix 52 are then computed using a

Cholesky or a SVD decomposition.

3.2. Analysis of the Eigen-Spectrum base functions

In Figure 2, the cumulated percentage of explained variance is represented as a

function of the number of components. We see that the 99 % level is attained with only

10 components. PCA uses optimally the redundant information existing in the IASI

channels by adaptatively determining the principal components hi as a weighted sum of
M

partially redundant channels: hi = F_, Fij • x j, Vi = 1,..., N. The terms hi can be seen
j-----1

as "meta channels" that have been adaptatively (in the statistical sense) determined

using the l:) data set of examples.

The first ten eigen-spectra of 52, i.e. the base functions F,a (F = L -1/2 • Vt), are

shown in Figure 3. Each one gives particular information on the statistical dependence

among the selected channels. For example, the eigen-spectrum base function 1 describes

a mean general deviation from the mean spectrum. Its shape is the same as the mean

spectrum in Figure 1 but it is inverted. We recognize all the absorption features

described in Table 1: temperature, water vapor, ozone, CO, etc.

The eigen-spectrum base function number 2 is more related to temperature
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(650-770and 2150-2420cm -1) and ozone (1000 to 1070 cm-1), less to water vapor. The

eigen-spectrum base function 3 is the opposite: it gives an information more related

to the 1210-2000 cm -1 spectral region of the water vapor. Some of higher number

eigen-spectrum look more localized. For example, eigen-spectrum base function number

8 isolates at 1000 to 1070 cm -1 (ozone) and 2100 to 2150 cm -1 (CO).

The 2350-2420 cm -1 spectral region is dedicated to CO2 temperature sounding.

We can use the relatively "direct" link between atmospheric temperature and brightness

temperature in this region to understand the behavior of the eigen-spectra. In Figure

4, the pieces of the 9 first IASI previous eigen-spectra in that spectral region are

represented: the base function value is represented on the abscissa, and the wave

number is represented on the ordinate. The mean spectrum of TIGR in that region is

also represented (bottom right). Smaller wavenumbers are sounding high-atmosphere

temperature, and larger wavenumber are sounding the near-surface temperature. It

is observed that the lower-order eigen-spectra are smoother than the following ones

and have a regular monotonic profile shape. For example, we see that the first

eigen-spectrum is similar (but inverted) to the mean spectrum: it is then a good base

function to represent the mean spectrum, i.e., a regular smooth information. The higher

order eigen-spectra have more pronounced inversion(s) at different "altitudes". These

base functions are used by the PCA to express the different atmospheric profiles, with

an increasing amount of detail as the number of components used increases.

The interested reader can found a more detailed analysis of the eigen-spectra in

[Huang and Antonelli, 2001] where the PCA has been used also to compress infrared

high resolution spectra.

3.3. Compression of IASI spectra

Let P be the N × M truncated matrix of F. The PCA decomposition uses this

truncated matrix P to project IASI spectra, x, of dimension M = 8461 into a space of
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lower dimensionN (with N < M)

h = F.x = F1,-xl +...+FN,'xN. (4)

The uncompression, 5, of data x, given its compression h, is given by:

2 = __-1 . h -_ hi • F,1 + ... + hN " ];.N (5)

where p-1 is a generalized inverse matrix since P is not square. The compression error

[Ix - 2[[ is given by [[hg+l" F,N+I +... + hM" F,M[I, where [t" [[ is the Euclidean norm.
E

1 [2PCA is optimum for the least squares errors criterion _ _ IIx e - 2e] [Joli.ffe, 1986].
e=l

For the compression, we only retain the N first filters, but a compromise

needs to be found between a good compression level and a good compression error.

Figure 5 illustrates the decreasing compression error with respect to the number of

PCA components used. The more components used for compression, the lower the

compression error is. With N = 50 filters (the 50 first principal components), the RMS

compression error of IASI spectra averaged over the whole TIGR data set is close to

0.05 K, which is much lower than the averaged IASI noise which is close to 1 K.

Figure 6 shows the spectral distribution of the compression errors. The more

eigen-spectra used for the compression, the lower the compression error. Taking 10

components is not enough, but with 50 components, the level of error becomes very

reasonable.

A global PCA uses the same covariance (or dependency) structure, whatever the

air mass, but this structure can vary with the air-mass. So a specialized PCA would be

more adequate. We will not investigate this point in this paper.

3.4. De-noising of IASI Spectra

There is a possibility to suppress part of the noise during the compression

process. It is assumed that the lower-order principal components (hi,..., hN) of a
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PCA decompositiondescribethe real variability of the observations,or the signal,

(here the IASI spectra) and that the remaining principal components(hg+l,.-., hM)

describe partially the instrumental noise. So, PCA representation of the spectra could

advantageously be used for de-noising. Observed spectra, x, are projected into the

regular subspace of the first components, describing the real variability of IASI spectra

(we will comment how to choose N in the following). The PCA is performed on no-noise

spectra in order that the resulting eigen-spectra are signal information and are not used

to describe noise. In the compression h, the variability attributed to the instrumental

noise is then partially suppressed, and the uncompression _ is the resulting spectrum

partially de-noised.

In Figure 7, the de-noising error (compressed and then uncompressed noisy

spectrum minus no-noise spectrum) is shown with respect to the number of PCA

components used for the compression. After a decrease of the error with increasing PCA

number due to a better compression, the de-noising error increases. This increase of the

de-noising error for an increase of number of components results from a more accurate

representation of the noise. Asymptotically, the compression error would converge to

zero (perfect representation of the noisy IASI spectra), but the de-noising error would

converge to the instrument noise (perfect reconstruction of the noisy spectra). The

optimum is given for N=30 components. This number depends not only on the spectral

characteristics of the IASI observations, but also on the noise level, and on the data set

(here the TIGR database) used to perform the PCA and the resulting statistics.

Figure 8 shows the spectral statistics of de-noising errors on the TIGR atmospheric

database. Using only 10 components is not enough. In the first and second spectral

bands, the de-noising error is still often larger than the instrumental noise. However, it

is shown that the third band is already considerably de-noised (0.2 K of RMS instead

of more than 2 K!). The use of 30 components for the compression/de-noising has

excellent statistics: de-noising statistics for this compromise is the lowest point of the
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curve. As already indicated by Figure 5, 30 components is the best compromise between

the compression error, requiring a large number of components, and a de-noising error,

requiring the limitation of the number of components used so as to not to represent

noise.

This compromise is good, of course, only in a statistical point of view. Actually, it

is interesting to note that with 200 components, some spectral regions are represented

with an equivalent, or even better, de-noising level than the 30-components one (see for

example 1500-1800 crrt-1). But statistically (i.e., on the whole spectra), the de-noising

errors are higher because noise has been represented by the additional components

(see first spectral band). If a spectral region is of particular interest (because of a

particular constituent absorption), it is important to note that the de-noising of the

entire spectrum is not necessarily the optimal solution. The particular spectral region of

interest may be neglected in a statistical point of view with respect to the other channels:

the compression/de-noising scheme will not sufficiently well represent this information.

Control of errors for each spectral region is crucial if such particular spectral regions are

of particular interest. Then, even if 30 components seem to be the perfect compromise

for compression/de-noising of the whole spectrum, it might be usefull to use higher

order components. Particular cases would use a combination of them. This is especially

true when the regression scheme used is able to extract nonlinearly information from

this components, in a non-Gaussian way. If we are interested in very localized channels,

that display complex behaviour (nonlinear with respect to the amount of the absorbing

constituent, unstable, etc.), a PCA, even with a high number of components, will not

be ideal: it probably will use too much components to describe this complex behavior.

An alternative would be to use, in that particular case, these raw specific channels.

In Figure 9, some spectral regions are represented to illustrate the compression and

de-noising properties for one atmosphere. We see how our scheme is able to retrieve the

signal part (i.e., no-noise spectrum) in a noisy observation (see for example the 645-650
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cm -1 spectral region). This is particularly true for high noise-level spectral regions like

2495-2500 cm -1 where the scheme has used the information of flat spectrum to avoid

the oscillations due to the instrument noise.

4. IASI Retrieval Method

Various inversion schemes proceed by retrieving the physical variables sequentially.

In this work, we retrieve these physical variables in parallel because the inverse problem

is in that case better constrained: (1) It is possible to use the nonlinear correlations or

dependencies among the variables, (2) if an observation (i.e., a channel or a spectral

region) is dependent simultaneously on two or more constituents, the retrieval scheme

would be better suited to resolve this ambiguity, and (3) the retrieved variables will be in

that case more consistent where hierarchical schemes can introduce inconsistencies. The

model developed here uses a nonlinear regression of the inverse RTM in the atmosphere,

obtained from a MLP neural network.

4.1. PCA-Based Pattern Recognition

For many ill-conditioned problems, the use of a first guess estimate is very important

to regularize the inversion process. In the Improved Initialization Inversion (3I) retrieval

scheme [Chddin et al., 1985; Scott et al., 1999], the initial guess is found in the TIGR

climate database. In the variational assimilation context, more focused on meteorology

than on climatology, this first guess solution is the 6-hour prediction, see [Prunet et al.,

1998] for an example in the IASI context.

To retrieve such a first guess efficiently from such a data set, the Euclidean distance

between observations x ° and a spectrum from the data set, x, is often minimized

DE(X°,x) = (x ° -- x) t . (x ° -- x).
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Another possibility is the Mahalanobis distance:

DM(xO, z) = (:co -- X)'Z-'(X ° -- x).

The Euclidean distance treats all variables in the same way where the Mahalanobis

distance gives less weight to variables with high variance and groups highly correlated

variables.

We propose here to use an Euclidean distance based on the first N PCA

components, h. This distance would be equivalent to the Mahalanobis distance if we

used all the PCA components (N = M) [Joliffe, 1986]. Using fewer components deletes

irrelevant information and produces a faster pattern recognition step (from a distance

with M = 8461 channels to a distance with N = 30 components). This distance is then

used to perform a pattern recognition in a climatological data set: for each observaton

x °, the first guess is determined a_s the atmospheric situation of the climatological data

set x such that the distance DE(h °, h) is minimum.

Examples of pattern recognition for one TIGR atmosphere within the remaining

TIGR atmospheres are presented on Figure 10 and RMS differences between first guess

and real profiles are given for temperature, water vapor and ozone in Figure 11. We

note that the first guess for temperature is not performant (about 4/5 K of RMS error)

but this can be explained by two factors: first, the pattern recognition for one TIGR

situation is made into the TIGR dataset. This can reduce by a factor of two the

sampling properties of the dataset. Second, the pattern recognition is made for the

whole spectra, each constituent of the atmosphere is then taken into account, and the

first guess has to be a compromise between each of the variables, temperature, water

vapor, ozone, etc. instead of temperature only. It is normal for the first guess error

in temperature to increase with altitude since IASI has less and less information in

high-level layers. A good first guess for water vapor is also difficult to obtain, the error

is between 32 and 75 %, but this can be due to the fact that IASI has little or no water
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vapor information for higher atmosphericlayers [Aires, 1999]. The first guesserror of

the total content for water vapor is about 32.5%. For ozone,the first guessis of good

quality, between10 and 25 %, but this is due to an insufficient representationof the

ozonein the TIGR versionusedin this study. This point is discussedin section5. The

first guesserror for ozonetotal content is about 10%.

4.2. The Neural Network Model

Part of the neural network scheme developed in the next two sections is described

in more detail in [Aires et al., 2001]. The Multilayer Perceptron (MLP) network is a

nonlinear mapping model composed of distinct layers of neurons: The first layer So

represents the input X = (x_ ; i E So) of the mapping. The last layer SL represents

the output mapping Y = (Yk ; k C SL). The intermediate layers Sm (0 < m < L) are

called the "hidden layers". These layers are connected via neural links. We note W the

parameters of these links. It has been demonstrated [Hornik et al., 1989; Cybenko, 1989]

that any continuous function can be represented by such a one-hidden-layer MLP.

The learning algorithm is an optimization technique that estimates the optimal

network parameters W by minimizing a cost function CI(I_'), approaching as closely

as possible the desired function. The criterion usually used to derive W is the mean

squares errors in network outputs

1

where DE is the Euclidean distance between Yk, the kth desired output component, and

Yk, the kth neural network output component, and $2 is the output layer of the neural

network.

In practice, the probability distribution function, P(X, Yk), is sampled in a data

set B = {(Xe, yke),e = 1,...,E} of E input/output couples, and CI(W) is then
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approximatedby the classicalleast squarescriterion:

1 E

CI(W) = "_ _ _ DE(f/k(Xe; W),yke) 2. (7)
e=l k6S2

The error back-propagation algorithm [Rumelhart et al., 1986] is used to minimize

(_I(W). It is a stochastic gradient descent algorithm that is very well adapted to the

MLP hierarchical architecture because the computational cost is linearly related to the

number of parameters.

4.3. Learning Algorithm With First Guess

When an inverse problem is ill-posed, the solution can be nonunique and/or

unstable. The use of a priori first guess information is important to reduce ambiguities:

The chosen solution is then constrained so that it is physically more coherent.

Statistically, this regularization avoids local minima during the learning process and

speeds it up.

Introduction of a priori first guess information as part of the input to the neural

network was proposed by Aires et al. [2001]. First, the neural transfer function becomes:

9 = gw(y , •°) (8)

where 9 is the retrieval (i.e., retrieved physical parameters), gw is the neural network

g with parameters W, yb is the first guess for the retrieval of physical parameters y,

x ° = RTM(y) + rl are the observations, where r/is the observation noise.

The learning algorithm consists of estimating the parameters W of the neural

network that minimizes the mean least squares error criterion. The term "mean"

depends on the probability distribution functions of the physical observation and

retrieved quantities. In this experiment, the least squares criterion has the following

form

1
C2(W)=-_///DE(gw(yb, x°),y)2 P(y,x°,y b) (9)
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lfff= -_ DE(gw(y + E,x + rl), y) 2 P(y)P,,(rl)P_(c), (10)

where P(y) is the probability distribution function of the physical variables y that

depends on the natural variability. P,(_) is the probability distribution function of the

observation noise 77. PE(_) is the probability distribution function of the first guess error

c=yb--y.

As explained in [Aires et al., 2001], the quality criterion in (9) is very similar to the

quality criterion used in variational assimilation. One of the main differences is that the

neural network criterion in (9) involves the distribution P(y). This is due to the fact that

the neural network simulates the inverse of the radiative transfer equation globally, once

and for all, and uses the distribution P(y) for this purpose. The neural network model

is then valid for all observations (i.e., global inversion). The variational assimilation

model has to compute an estimator for each observation (i.e., local inversion).

To minimize the criterion of Eq. (9), we create a data set B = {(ye, x°e, ybe); e =

1,..., E} that samples as well as possible all the probability distribution functions in

(9). Then, the practical criterion used during the learning stage is given by:

1 E

42(W) = _-_ _ DE(gw(ybe, x°¢),Y¢)) 2. (11)
e=l

First, to sample the probability distribution function, P(y), we select geophysical

states (ye) that cover all natural combinations and their correlations and by calculating

x e = RTM(y _) with the physical model (i.e., physical inversion). Alternatively we

could obtain these relationships from a "sufficiently large" set of collocated and

coincident values of x and y (i.e., empirical inversion). For sampling P,, we need

a priori information about the measurement noise characteristics; a physical noise

model could be used, but if all we have is an estimation of the noise magnitude, then

we have to assume Gaussian distributed noise 7/that is not correlated among the

measurements (i.e., the hypothesis made for IASI, see section 2.1). To sample the first

guess variability with respect to state y (i.e., sampling p(yb[y)), we use a first guess
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data set {ybe; e = 1,..., E}: this data set can be a climatological data set or a 6-hour

prediction (would have better statistics of errors, but would add model dependencies).

The balance between reliance on the first guess and the direct measurements is then

made automatically and optimally by the neural network during the learning stage.

As for the PCA-based pattern recognition (section 4.1), the effect of using PCA

components , h, instead of the raw IASI spectra, x, is that the method is faster

because of the dimension reduction, and uses observation with a reduced noise level.

Furthermore, the learning stage is faster since the network has less inputs and less

parameters to estimate. The quality criterion in (11) is simpler because inputs are

decorrelated and there are less degrees of freedom in the model and so it is easier to

minimize, with less probability to become trapped in a local minimum. For a more

detailed description of PCA-based regression, the reader is referred to [Joliffe, 1986].

4.4. Weighting in the Quality Criterion

The inputs and outputs of the network are not homogeneous, i.e. different types

of variables have different dynamic ranges. As we will see in the following, solving this

problem necessitates to diagnose the learning step, and control correctly the system, in

contradiction with the black-box conception often associated to neural networks. The

range of values, which is different for temperature or water vapor, is not the true issue

here since, traditionally, the data are normalized to unity as inputs and as outputs of

the neural network. The true concern is the too different dynamical range of values for

the same variable. For example, the range of the water vapor path per layer can go

from zero to more than 5 cm, with an exponential decrease with altitude. Using these

physical values as outputs of the network can be misleading: an error of 0.1 cm in a wet

situation with a total of 5 cm would have the same weight, during the learning stage,

as an error of 0.1 cm in a wet situation with a total of 0.2 cm. So depending on the

observed situation, an error of 2 % would have the same weight than an error of 50 % !
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Absolute value errors are inadequate in this case. To resolve this problem, we equalize

the importance of the different values. There are two possibilities: using the logarithm

of the water vapor content or using a percentage error criterion

i )2D(gw(yb_,x°e),ye)) = _ \ x°ei

instead of the absolute RMS error

DE(gW(ybe, X°e), ye) ) = _i (gw(ybe, x°e)_ -- X°e_)2

in (11). In other words, for a global analysis, the percentage error is a more pertinent

criterion than the absolute error that would have over emphasized wet atmospheric

situations. We will use, in the following, the percentage of error instead of the absolute

error for the water vapor and the ozone values. The counterpart of this new criterion is

that the percentage of error could be exagerated for values very close to zero. We will

comment this effect during the presentation of the results.

The atmospheric temperature is described by 39 output values (i.e., the 39

atmospheric levels) in the neural network where water vapor and ozone are each

described by only 8 values (i.e., tile 8 atmospheric layers). In order to give the same

importance to each of these 3 physical variables, we use an additional weight in the

criterion for each of the neural outputs: 1 for each of the temperature and 39/8 for each

of the water vapor and ozone values.

5. Results For the Retrieval of Temperature, Water Vapor and

Ozone Atmospheric Profiles

5.1. Data Set

Our neural network model is trained and tested using a large number of real

atmospheric situations measured by radiosondes, taken from the TIGR database [Chddin

et al., 1985; Achard, 1991; Escobar, 1993b; Chevallier et al., 1998; 2000]. We use
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the TIGR3 database composed of 2311 atmospheres: 872 in tropical air-mass, 388 in

mid-latitude type 1,354 in mid-latitude type 2, 104 in polar type 1 and 593 in polar

type 2. These atmospheres are described by their temperature and gas concentration

profiles. For the retrieval scheme, we have used the discretization described in Table 3.

The discretization in temperature is the same as the one used by ECMWF, except for

the 3 near-surface levels (37, 38, and 39) that are each the combination of two ECMWF

levels which we consider too thin for IASI (the first ECMWF level is at 60 m). For

water vapor, we take layers of about 2 km, which follows the recommendation for IASI.

The ozone discretization is not regular; it emphasizes the layers near 30 hPa where the

ozone abondance is maximum. The water vapor and ozone discretizations are kept as a

sub-discretizations of the ECMWF scheme.

The TIGR atmospheres, selected from a collection of more than 150,000 radiosonde

measurements, include a large number of rare events. Not only is the range of variability

occasionally extreme, but also the occurence and strength of inversions in the profiles

imtroduces complicated structures that are very challenging to any retrieval method.

These very complex profiles are much more irregular than reanalysis data or model

output data. The data set represents, as much as possible, all kinds of possible

atmospheric situations. This complexity represents a higher variability than that

encountered under operational conditions where model output is used as the first guess,

so our estimate of the retrieval errors could be an over-estimate. However the use of a

large and complex climatological data set allows the inversion model to be calibrated

globally including rare events.

The ozone variability representation is not sufficient in this version of TIGR.

So, it is expected that in our results, the retrieval error for ozone be probably an

under-estimate of the correct error level for IASI. A new data set is presently being

developed to improve the ozone representation.

The RTIASI forward radiative transfer algorithm developed at ECMWF [Matricardi
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and Saunders, 1999] has been used to compute the IASI brightness temperatures

associated with the TIGR atmospheres for clear conditions over the sea. For each 2311

atmospheres of TIGR, we have simulated 5 noise realization using the specifications for

the instrument, Table 2 and equation (1). Our training and testing data set is then

composed of 11,555 examples. We have specialized a neural network, NN1, for wet

atmospheres (precipitable water amount larger than 1 cm) and another one, NN2, for

dry atmospheres (precipitable water amount lower than 1 cm). We have 5,775 examples

in the first case and 5,780 for the second case. The choice of dry or wet configuration

can be made using the first guess.

5.2. Wet Atmosphere Configuration

The E = 5,775 wet examples have been randomly separated into two subsets: a

training set of 5000 examples and a testing set of 775 examples. We take 100 PCA

components (i.e. more than the optimal 30 components for de-noising) as inputs for the

IASI observation part since the NN is able to use only the information that it needs for

the desired retrieval: x ° = h. It is possible that between the 30th and the 100th PCA

components, there are information on specific spectral region, not statistically important

on the whole spectrum, that is useful for the NN retrieval.

The architecture of the network NN1 is a MLP (Figure 12) with 155 inputs coding

the M = 100 PCA components, x ° = h, and the first guess, xb (39 temperature, 8

water vapor and 8 ozone values), 80 neurons in the hidden layer, and 55 neurons in

the output layer coding the retrieval, x. The number of neurons in the hidden layer

is estimated by a heuristic procedure that monitors the generalization errors of the

neural network as the configuration is varied: for a too small number of neurons in the

hidden layer, the generalization of the neural network is insufficient because of the lack

of complexity of the neural architecture to represent the desired model (i.e., bias error).

For a number of neurons too large, the complexity of the neural network is too rich
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comparedto the desiredmodel and the overfitting problem,wherethe learning error is

small, but the generalizationerror is big, appear (i.e. varianceerror). This dilema is

called bias/variancedilema [Geman et al., 1992]. In practice, we use different number

of neurons in the hidden layer and the smaller generalization error indicates the best

compromise.

Figure 13 represents the learning and the testing curves of some of the retrieved

quantities during the learning stage. The purpose of this figure is to show how the

inhomogeneity of the outputs in the neural network can be a problem. The water

vapor is much more complex to retrieve than ozone or temperature: the curve has

plateaus which correspond to local minima, where the error can not be decreased, and

error increases, when the learning overshoots the local minima. To control this kind of

problems, it is important to give an uniform weight to each of the variables, this is the

reason why we have modified our quality criterion as explained in section 4.4. Even

with this new criterion, the water vapor can still be trapped at some stages, while other

variables (like the temperature or ozone) continue to improve. However, at some time,

the constraints between water vapor and temperature or ozone are so strongly violated

that the optimization algorithm changes the water vapor to bypass this local minima:

first, an increase of the error and, then, a decrease of the error. This shows how it can

be advantageous to retrieve in parallel more than one physical variable, the problem

being better constrained.

Figure 14 presents three examples of retrievals. We see, in each case, a major

improvement of the temperature profile retrieval over the first guess: true profile and

the noisy retrieval are difficult to distinguish in this figure. This is also true for the

water vapor retrieval. Ozone is also very good, but the first guess was already very

close to the correct solution. Consequently, the retrieval statistics for wet atmospheres,

represented in Figure 15, are good. The RMS temperature error is mostly below 1

K, being in the 0.5-0.7 K range for level between 900 and 250 hPa. We have already
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shownin [Aires, 1999]that the fusion of the information from AMSU would improve

significantly the temperature retrieval above200 hPa. The retrieval of water vapor is

very good: 5 % error for total water vapor path, 10% for the first 3 atmosphericlayers,

then errors in the range 10-20%, except for the layer near 300hPa. The peackerror in

the test retrieval of water vapor at 300hPa is probably due to an insufficient number of

atmospheresin the training data set. Ozoneretrieval is very good, but this retrieval is

too optimistic becauseof insufficient variability in the data set.

5.3. Dry Atmosphere Configuration

The E = 5,780 dry examples have been randomly separated in two subsets: a

training set of 5000 examples and a testing set of 780 examples. The architecture of

the network NN2 (Figure 12) is the same as NNI: 155 inputs, 80 neurons in the hidden

layer, and 55 neurons in the output layer.

Figure 16 presents three examples of retrievals. The same comments as for wet

conditions hold: the overall retrieval of temperature, water vapor and ozone seems good.

However, we see some small error in the retrieval of atmospheric temperature above

200-100 hPa (see for example temperature profile B). Also, errors can appear when the

true profile posseses a too strong inversion (see profile C at level 100 hPa). Water vapor

is well retrieved, a small over-estimate can be observed for atmosphere B. Retrieval

errors for ozone are small; even when the first guess is already close to the true profile,

like atmosphere C, the retrieval scheme still improves the retrieval.

Figure 17 shows the RMS retrieval errors for temperature, water vapor and ozone

for the dry condition neural network. The retrieval of temperature is more difficult in

dry condition than in wet conditions (Figure 15). The RMS error is < 1 K, except for

near-surface levels, due to near-surface inversions, and near 200 hPa. The total water

vapor content is retrieved with 7 % mean percentage error and only three atmospheric

layers (around 300 hPa) are above 15 % mean error. It is important at this point to note
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that the percentageerror is not a perfect measureof the errors: for zero or near-zero

content, the percentage error has no significance. For example, retrieving a content of

0.0002 cm for an actual true value of 0.0001 cm would produce a percentage error of

300 %, even if the absolute error is very small. Furthermore, the physical limitations of

the IASI instrument, in terms of signal to noise ratio, will not allow a good retrieval for

very low water vapor contents. Figure 17(B) shows the mean percentage error without

the contribution of the low water vapor content cases (less than 0.01 cm); percentage

mean error becomes uniform with height at 15 %, which is a good result for these dry

situations.

6. Conclusion and Perspectives

We have developed a PCA-based method for compressing, de-noising, and first

guess retrieval for the high-resolution interferometer IASI. Our approach allows for a

more complete exploitation of the information in the IASI spectra. In particular using

the redundancy among channels for noise reduction and the nonlinear correlations to

provide more strongly constrained retrieval. These pre-processing steps (compression,

de-noising, first guess retrieval) are a crucial step in the neural network retrieval, but this

approach is completely general and does not depend on retrieval method. For example,

our compression/de-noising approach could be used in a variational assimilation scheme:

dimension of data is smaller, noise is reduced, and variables are decorrelated. This

would simplify calculations and speed the scheme.

We also developed a neural network retrieval scheme which uses first guess

information. This additional information has the advantage of better constraining

the inverse problem, improving retrieval results. This neural network approach does

not need Jacobians as in classical inversion algorithms. The simultaneous retrieval of

many variables is also a crucial point, since it allows us to exploit the complex inter-

dependencies among the observations, among the variables and between observations
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and variables for a better constrained inverse problem.

Our experiments were made with the TIGR database, i.e. a vast and complex set

of real atmospheric situations (from radiosonde measurements which are much more

irregular than model output) with rare events. This fact provides a global applicability

of our method. The retrieval errors are good: temperature is retrieved with an error

under or close to 1 K, total amount of water vapor has a mean percentage error between

5 and 7 %. Amospheric water vapor layers is retrieved with error between 10 and 15 %

most of the time. Statistics of ozone retrieval are too much optimistic due to a lack of

representation of ozone variability of our data set.

It is important to note that the results obtained for the IASI retrieval are entirely

dependent on the complexity of the data set used to perform the statistics. Thus, it

has been demonstrated, in this work, that with our complex atmospheric situations, the

potentialities of the IASI instrument allows reaching the WMO specifications on realistic

conditions. This new instrument will be a clear advance compared to the previous

instruments. It has been shown also that the MLP inversion technique is a pertinent

method for the processing of IAS] observations. It is flexible enough to introduce a

priori information in the retrieval scheme, it is robust to noise, and it is very fast and

accurate. This new scheme is then a privilegiate candidate for the processing of IASI

observations.

There are various perspectives for this work. First, a more optimal de-noising

approach would be to perform a PCA for each air mass. In effect, using a global PCA,

the same statistical structure of dependencies is used for each air-mass, which can

be non-optimal. A specialized PCA is expected to even better describe the natural

variability on IASI observations. A new TIGR is under development where the ozone

variability is improved. Another advantage of our approach is that it can easily

accomodate nonlinear relationships between the information from other instruments

[Prigent et al., 2001]. This is a particularly interesting feature since IASI results on
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high-altitude atmosphere temperature is expected to be improved by AMSU [Aires,

1999]. Our algorithm needs also to be extended to land, and to take into account cloudy

conditions; for that purpose, we will capitalize on our work on the SSM/! instrument

[Aires et al., 2001].
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Notation

Y

yb

£

nTi(y)

M

r]

P

P,l(r])

Pc(c)

E

F

I

<.>

gw

vector of physical variables to retrieve.

estimate of y.

first guess a priori information for x.

= yb _ y, first guess crr<)r.

radiative transfer model for the physical

variables y (also a vector).

x ° IASI brightness temperature spectrum

observations.

dimension of the IAS[ spectrum x.

IASI instrumental nois(_.

generic probability measure.

probability distribution function of 7/.

probability distribution function of c.

number of samples in the data set.

h PCA compression of tlw IASI spectrum

X.

N dimension of the compression h (N _<

M).

E M x M covariance matrix of spectra x.

V M x M matrix of eigenvectors of E.

L m x M diagonal matrix of eigenvalues of

E.

M x M filter matrix.

Identity matrix.

expectation operator.

sigmoid function of the neural network.

neural network model, or transfer func-

tion for our application.

W = {w/y}, the set of the parameters of the
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2_able 1. IASI Spectral Information

Spectral Region (cm- 1) Variable

650 to 770

770 to 980

1000 to 1070
1080 to 1150

1210 to 1650

2100 to 2150
2150 to 2250

2350 to 2420

2420 to 2700

2700 to 2760

COs temperature sounding

surfaces and cloud properties

03 sounding

surfaces and cloud properties
water vapour sounding; N20 and CH4 column amounts
CO column amount

CO2 temperature sounding; N20 column amount

C02 temperature sounding

surfaces and cloud properties

CH4 column amount



Table 2. NEAT Noise Characteristics of IASI at 280 K

v NEAT

in cm-_ in K

650 0.419

700 0.157

750 0.145
800 0.145
850 0.150
90O 0.150

950 0.165

1000 0.165

1050 0.176

1100 0.200

1150 0.200

1200 0.095

1250 0.096

1300 0.098

1350 0.100
1400 0.105

1450 0.105

1500 0.111

1550 0.116

1600 0.125

1650 0.137

1700 0.160

1750 0.170

1800 0.200
1850 0.224

1900 0.250

1950 0.240

2000 0.130

2050 0.135

2100 0.141

2150 0.151

2200 0.172

2250 0.200

2300 0.239
2350 0.287

2400 0.351

2450 0.400

2500 0.700

2550 0.900

2600 1.100

2650 1.300



Table2. (continued)

v NEAT

in cm-1 in K

2700 1.600

2750 1.935



Table 3. TemperatureLevels,Water"vaporandOzoneLayersfor theIASI
RetrievalScheme

LayerorLevel Temperature WaterVapor Ozone
Number Levels(hPa) Layers(hPa) Layers(hPa)

1 0.100
2 0.290
3 0.690
4 1.420
5 2.611
6 4.407
7 6.950
8 10.370
9 14.810

10 20.400
11 27.260
12 35.510
13 45.290
14 56.730
15 69.970
16 85.180
17 102.050
18 122.040
19 143.840
20 167.950
21 194.360
22 222.940
23 253.710
24 286.600
25 321.500
26 358.280
27 396.810
28 436.950
29 478.540
30 521.460
31 565.54O
32 610.600
33 656.430
34 702.730
35 749.120
36 (795.090+839.950)/2.
37 (882.800+922.460)/2.
38 (957.440+985.880)/2.
39 (1005.430+1013.25)/2.

0.10to 167.95
167.95to 253.71
253.71to 358.28
358.28to 478.54
478.54to 610.60
610.60to 795.09
795.09to 1013.25

0.10to 1013.25
,,.

..o

,,

.,

0.10 to 0.69

0.69 to 2.61

2.61 to 20.40

20.40 to 45.29

45.29 to 69.97

69.97 to 102.05

102.05 to 1013.25

0.10 to 1013.25

.,

..,

,..



Figure 1. Mean IASI spectrum (left) and corresponding standard deviation of IASI

instrumental noise (right). Principal spectral absortion regions are indicated, as in Table

1

Figure

number

Figure

Figure

spectral

Figure

2. Cumulated expIained variance percentage of IASI spectra with respect to the

of PCA components

3. First 10 IASI eigen-spectrum base functions

4. Interpretation of IASI eigen-spectra for temperature, in the 2350-2420 cm -1

region

5. Compression error with respect to the number of PCA components used

Figure 6. Statistics of compression in the 3 spectral bands of IASI for 10 components

(upper line) and 200 components (lower line), intrumental noise standard deviation is

represented in grey for comparison purpose

Figure 7. De-noising error (continuous line), and overall instrumental noise (dashed

line), with respect to the number of PCA components used in the compression

Figure 8. Statistics of de-noising errors in the 3 spectral bands of IASI using 10, 30 and

200 PCA components, for the TIGR situations, instrument noise (red line) is shown for

comparison purpose

Figure 9. Comparison of one noise-free spectrum (dotted line with points), the same

spectrum with noise (continuous line), and the corresponding de-noised spectrum using

30 PCA components (dashed line)

Figure 10. First guess retrieval examples: (A) tropical, (B) temperate, and (C) polar

situations. Near surface values for water vapor and ozone represent the total vertical

content

Figure 11. RMS error of the first guess for (A) temperature, (B) water vapor, and (C)

ozone. Near surface values for water vapor and ozone represent the total vertical content

Figure 12. Architecture of a MLP neural network with first guess a priori information:

yb is the climatological first guess, x ° is the IASI observation (brightness temperature

spectrum compressed and de-noised by PCA), and y is the neural network retrieval



Figure 13. Learning curves for (A) temperature at 817 hPa, (B) water vapor between

358 and 478 hPa, and (C) ozone between 20 and 45 hPa

Figure 14. Three examples (A, B, and C) of temperature, water vapor, and ozone

atmospheric profiles retrieval in the wet atmospheres configuration. Near surface values

for water vapor and ozone represent the total vertical content

Figure 15. Error profile for the retrievals in the learning set (continuous line) and in the

generalization set (discontinuous line) for temperature (A), water vapor (B), and ozone

(C): Wet atmospheres configuration. Near surface values for water vapor and ozone

represent the total vertical content

Figure 16. Three examples (A, B, and C) of temperature, water vapor, and ozone

atmospheric profiles retrieval in the dry atmospheres configuration. Near surface values

for water vapor and ozone represent the total vertical content

Figure 17. Error profile for retrievals in the learning set (continuous line) and in the

generalization set (discontinuous line) for temperature (A), water vapor (B), and ozone

(C): Dry atmospheres configuration. Near surface values for water vapor and ozone

represent the total vertical content
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